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Abstract

Lead-lead collisions are one of the current focuses of the Large Hadron Col-

lider at CERN. It is possible that quark deconfinement occurs in such colli-

sions, and so it is important to study the properties that manifest from the

highly thermalized quarks and gluons. Flow properties play an important

role in such research, and I focus on elliptic flow (v2) in this paper. I will

discuss background information as well as my results in studying the flow

coefficients of simulated heavy-ion collision data. Finally, I will describe my

progress in utilizing Bayesian unfolding to remove gaussian smearing from

the v2 distribution for collisions with impact parameter 8 < b < 10.
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Chapter 1

Introduction

1.1 Quark-Gluon Plasma

Quark-Gluon Plasma (QGP) is a theorized state of matter in which the

quarks and gluons are so energetic that they are deconfined.1 This concept

comes from confinement, the property that the color field between quarks

increases in strength so readily with distance that pulling two bound quarks

apart results in quark-antiquark pair production from the field energy. Thus,

trying to break apart bound quarks results in new quarks to be bound to,

and so they remain confined.

The theory is that high-temperature hadrons might undergo a phase tran-

sition where the quarks become deconfined. This idea follows from the la-

grangian formulated in Quantum Chromodynamics (QCD), which accurately

describes strong interactions and explains that gluons are self-coupling. This

1Some papers implicitly define QGP to be the existing state of matter being studing
in heavy-ion research. For that definition, QGP would be described as possibly consisting
of deconfined quarks. I will use the definition that all of my references use, that QGP is
what we hope to find, not what we have already discovered.
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1.1. QUARK-GLUON PLASMA 1. Introduction

is what causes the aforementioned confinement, but only for small momen-

tum transfers [1]. For large momentum-transfers, QCD predicts a state of

asymptotic freedom. If such a state exists, it would be immediately impera-

tive to investigate the properties of such a material.

Currently, it is suspected that QGP has been discovered in heavy ion research,

and as such I will now discuss some historical events to date. Basic arguments

understood in 1980 predicted the strong phase transition to occur for an

energy density of ε ∼ 1 GeV/fm3 and a temperature of T ∼ 200 MeV, but this

was well outside the range of study at the time. The 1990s mark the start of

heavy ion experiments at the Brookhaven Alternating Gradient Synchrotron

(AGS) and the CERN Super Proton Syncrotron (SPS). These experiments

continued with the AGS serving as an injector for the Relativistic Heavy-

Ion Collider (RHIC), where maximum center of mass energies of
√
sNN =

200 GeV were attained, an order of magnitude higher than its predecessors

[1]. Most recently, the Compact Muon Solenoid (CMS) as part of the LHC

at CERN has been investigating PbPb collisions at
√
sNN = 2.76 TeV [2].

These PbPb collisions are of the most interest for this paper.

Heavy-ion collisions are relevant to QGP research since they produce a rela-

tively large amount of matter at the highest temperatures we can currently

create. As of this writing, there exists significant evidence from heavy ion

research that a phase transition occurs in such collisions. However, instead of

the expected transition into a hot gas of non-interacting quarks and gluons, it

appears that the hot quark-gluon mass behaves very much like a liquid with

a viscosity to entropy ratio η/s very close to a theoretical minimum obtained

using gauge gravity duality calculation [1]. This unexpected result is very

interesting, but experimentally determining η/s requires an understanding

of the mechanism of flow and fluidity in the hot quark-gluon matter.
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1.2. ELLIPTIC FLOW 1. Introduction

Figure 1.1: A 3D model of two lead ions colliding off-center, where the
distance between them at the time of the collision, b, is in the x-direction

[1]. Note the somewhat ellipsoid collision region.

1.2 Elliptic Flow

First, one must have an accurate picture of the sort of collision being dis-

cussed. Figure 1.1 shows a 3D model of a PbPb collision with labeled axes

and reaction plane. If the hot quark-gluon ellipsoid in the middle of the

collision behaves like a non-interacting gas, then it will expand uniformly

in all directions. Then, as it expands and cools, the particles detected will

not have any azimuthal dependence.2 The actual results show that generally

there is a strong increase in particle production along the short axis of the

ellipsoid, which is close to the x-axis.3 A model of how this flow progresses

is illustrated in Figure 1.2.

The simplest description for the flow is that initially, the fluid is compressed

2The azimuth φ is the angle in the xy-plane relative to the reaction plane, or counter-
clockwise from the +x-axis.

3See Chapter 3 for discussion of the variation in ellipsoid orientation from the reaction
plane.
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1.2. ELLIPTIC FLOW 1. Introduction

Figure 1.2: A profile of the energy density in the xy-plane over time
for a non-central collision. The z-axis is defined to be along the incoming
beam direction, and the x-axis is defined by the impact parameter b [1].

along the short axis, so like the surface tension of a water droplet, the ellipsoid

“wobbles” into a spheroid as it cools. However, this is caused by a momentum

transfer from the long axis to the short axis, so now what was the short axis

of the ellipsoid now has a far greater momentum than the long axis. More

momentum means more kinetic energy, so more particle production along

the short axis is observed.

Formulas There are many ways to characterize this flow from data. To

understand it from simulated data (see Section 2.1), one can look at the inital

state of the participating particles and compare it to the final state of the

momenta of the produced particles.

The initial state is generally characterized by using a Fourier decomposition:

dN

dφi
∝ 1 + 2

∞∑
n=1

vn cosn(φ− Φ∗n) (1.1)

and then finding the reference angle Φ2 and eccentricity ε2 using:

Φn = Φ∗n +
π

n
=

1

n
[atan2 (〈rn sin(nφi)〉 , 〈rn cos(nφi)〉) + π] (1.2)

εn =

√
〈rn cos(nφi)〉2 + 〈rn sin(nφi)〉2

〈rn〉
(1.3)
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1.2. ELLIPTIC FLOW 1. Introduction

where φi is the azimuthal angle of an initial participating particle, n is the

order of the eccentricity (n = 2 for elliptic behavior), 〈αi〉 is the average α for

the initial participating particles, and atan2(a, b) is the same as atan(a/b),

but with the range (−π, π] [2].

The final state data is similar to compute, but has more subtleties. There

are now interesting issues, like how the vn coefficient given by a Fourier

decomposition of the final momenta is going to have a reference angle Ψn

distinct from the Φn in the initial participant decomposition. In practice

with experimental data, this is resolved by using two-particle correlations

(vn {2}) and four-particle correlations (vn {4}) which do not depend on the

reference angle, and then inferring what the mean and standard deviation of

vn is from

vn {2}2 = 〈vn〉2 + σ2
vn (1.4)

vn {4}2 = 〈vn〉2 − σ2
vn (1.5)

where the cumulants vn {2} and vn {4} involve iterating over every pair and

quadruplet of particles, respectively [2].

This, however, is technically difficult, so I started with using the much simpler

vn = 〈cos(nφf − nΨn)〉 (1.6)

where φf is the final momentum azimuth and Ψn can either be taken to be the

same as Φn or calculated based off the final momenta by taking Equation 1.2

but replacing φi → φf .
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1.3. BAYESIAN UNFOLDING 1. Introduction

1.3 Bayesian Unfolding

I warn the reader that this section is out of context no matter where it lies,

so some of the bits will not make sense until that context is filled.

First, unfolding is the process by which one tries to solve the following prob-

lem: Given a distribution/vector of effects v2obs = n(E) and a smearing

matrix Λ = (λji) with elements λji = P (Ej|Ci), what is a reasonable guess

for the distribution/vector of causes v2true = n(C)?

There are many ways people have tried to solve this problem in the past. I

will mention them and their advantages briefly; my references go into greater

detail, so feel free to look in those documents for more information. So, the

methods include [3]:

bin-by-bin Models the action of Λ as the multiplication of an efficiency

factor on each bin of v2true to obtain directly a corresponding v2obs.

Valid when there is negligible migration and the standard deviation is

less than the bin size.

Other than being fundamentally wrong, you also have the threat that

choosing smaller bins can have worse results.

matrix inversion Models the action of Λ as a deterministic matrix multi-

plication v2obs = Λv2true. Solves for v2true by finding Λ−1v2obs.

Λ may be singular, in which case rebinning can sometimes resolve the

issue.

Results are still generally unstable, in that small changes in inputs

create large changes in outputs, and in that negative values can be

obtained for cause distributions which should never be negative.
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1.3. BAYESIAN UNFOLDING 1. Introduction

regularized unfolding Models the action of Λ as a composition of orthog-

onal polynomials.

Produces satisfactory results.

Technically difficult: only one-dimensional problems even seem solv-

able.

Bayesian unfolding Models the action of Λ as a set of probabilistic state-

ments. Solves for v2true by iterative applications of Bayes’ theorem.

Theoretically well-grounded, has no restrictions on binning.

Of the possible methods, Bayesian unfolding is a definite win. So, let’s discuss

the method itself. Again, I will not go into full detail for the sake of space.

The full method as described by D’Agostini[3] involves some extra steps,

wherein he calculates event distributions unnecessarily, when probability dis-

tributions are perfectly effective and may be converted to event distributions

at the end. A concise version says:

1. Choose an arbitrary P0(C) based on your best guess of the distribution.

2. Calculate the efficiency for each cause, given by

εi =
∑
j

λji =
∑
j

P (Ej|Ci) (1.7)

3. Calculate the next iteration’s probability distribution, given by

P̃1(Ci) =
1

εi

∑
j

P (Ci|Ej) (1.8)

=
1

εi

∑
j

P (Ej|Ci) · P0(Ci) · P (Ej)∑
α P (Ej|Cα) · P0(Cα)

(1.9)

where Equation 1.9 is given by Bayes’ Theorem.
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1.3. BAYESIAN UNFOLDING 1. Introduction

4. Normalize your distribution:

P1(Ci) =
P̃1(Ci)∑
α P1(Cα)

(1.10)

5. Return to Step 3 and repeat.
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Chapter 2

Software

2.1 Simulation

Since actual collision data is vast and time-consuming to sort through, before

running processing code over it, I worked on code to analyse the data sim-

ulated by a program developed by RHIC researchers called “A Multi-Phase

Transport model” (AMPT). There are many types of models for heavy-ion

collisions; three are: thermal, hydrodynamic, and transport. The assump-

tions for these, respectively, are global thermal and chemical equilibrium,

local thermal equilibrium, and non-equilibrium [4].

Thermal models have been good for explaining the particle yields; hydrody-

namic for collective behavior of particles with low transverse (z) momentum;

transport for more complicated effects like Hanbury-Brown-Twiss interfer-

ometry of hadrons. Where these fall short, perturbative QCD has produced

a few models for particles with large momentum transfer, and a few special

effects have developed their own models and theories, such as Yang-Mills

theory [4].
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2.2. PROCESSING 2. Software

All in all, for our purpose of studying the elliptic flow, hydrodynamic or

transport models are suitable. However, it is far more interesting to use a

more thorough transport model, so we use AMPT.

AMPT accepts a configuration file with every necessary variable about the

collision, with the option to specify ranges of values. Thus, we generate a lot

of data with random impact parameters b, and then sort through the data

after the fact using ROOT, discussed further in Section 2.2.

One last necessary fact about our setup is that the transport model is very

computationally intense, since the interactions of so many particles must be

judged. As such, for data generation, we run AMPT on DAVinCI, one of the

shared computing resources of the Rice Research Computing Support Group.

DAVinCI was procured by the Data Analysis and Visualization Cyberinfras-

tructure funded by NSF under grant OCI-0959097.

2.2 Processing

I processed the data output by AMPT using ROOT. ROOT is a set of object-

oriented frameworks developed by CERN and build off of C++. In addition

to having fully-featured histogram, data storage, and vector methods, it fea-

tures a C++ interpreter called CINT. ROOT is designed from the ground up

to be a more than sufficient replacement for the FORTRAN programs that

have been standard for many computationally difficult physical problems.

Histograms ROOT’s histograms are versatile and streamlined for easy,

rapid binning at any given moment. Additionally, plotting with any number

of extra options is possible, including taking a multidimensional histogram

and using one of the axes to choose colors from a colormap. Fitting is very

easy as well, as illustrated in Figure 3.8.
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2.2. PROCESSING 2. Software

Trees ROOT has one main data structure for compressed storage, which

is the tree file. Trees are made to be very compact, but as a consequence are

very nearly read-only. They are perfect for storing sets of data that all have

the same overall form, such as when each collision event needs to have stored

the initial positions of all participating particles as well as the final positions

and momenta of all produced particles.

My advisor Dr. Wei Li and Zhenyu Chen were in charge of producing AMPT

output and converting the data into ROOT tree files. Then I ran code to pass

over the tree files and calculate reference angles, eccentricities, and fourier

coefficients. Later, I put these values into new trees so that I could easily

analyze that data for the unfolding procedure.

A large part of my research experience was learning to use C++ and ROOT

for the first time. I made my own code from scratch to loop over trees and

construct new ones with the analysis data. (vn coefficients, Ψn measurements,

etc.)
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Chapter 3

Results

3.1 Eccentricity

My first task was to calculate the eccentricity ε2 of the initial particles in

each event using Equation 1.3.

At this point, C++ was still new to me, so I had to wrestle with many compile

errors, and even a very unfortunate ROOT bug that alters warning line

numbers based on the number of completed for loops in the script. However,

after much effort, I finally had not only code that properly calculated ε2 and

Φ2 for each event, but also εn and Φn for any arbitrary n. The histogram

results for n = 2 and n = 3 are shown in Figure 3.1 and Figure 3.2.

It’s interesting to note that the initial situation does favor noticeably larger

ε2 than ε3, as shown in Figure 3.1 with mean values of 〈ε2〉 = 0.2561 and

〈ε3〉 = 0.1643, and a wider standard deviation as well. This follows the

description given in Section 1.2 that the participants should be ellipsoid

initially.
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3.1. ECCENTRICITY 3. Results

Figure 3.1: Eccentricity histograms for ε2 and ε3 for 35500 events with
median bias (b randomly chosen with preference to the median value).

Figure 3.2: Reference angle histograms for Φ2 and Φ3 for 35500 events
with median bias – at the time, I used Ψ for reference angles in general.
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3.1. ECCENTRICITY 3. Results

Figure 3.3: Initial particle position for both ions, with participating
nucleons in blue. The first case shows how Φ2 can vary from 0, and the

second case shows how ε3 can actually be quite large sometimes.

The other interesting note is that Φ2 does favor Φ2 = 0 as expected, since

that corresponds to the short axis of the ellipsoid being aligned with the

reaction plane. The haphazard reference angles for Φ3 indicate that there

isn’t a consistent phenomenon occuring there, which is also expected.

However, this begs the question: What’s going on with Φ2 6= 0 and ε3 � 0?

To answer this question, I searched the median bias event simulations for

cases that matched the unusual situations I was looking for, then wrote a

ROOT script to plot the positions of the initial particles in those cases, shown

in Figure 3.3.

These results suggest what’s really happening is just due to the fact that

even though lead nuclei are rather large, they still have a finite number of

particles, and they aren’t distributed evenly, so there can be unusual gaps

in the region of intersection for the ions where no nucleons are there to

represent it. Additionally, some nucleons can be in the region of intersection

where there are plenty of nucleons, but still happen to pass through without

interaction. So, the ellipsoid-like shape in Figure 1.1 is very much an idealistic

picture, the product of perfectly uniform spheres of nucleons colliding with

each other.
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3.2. FLOW COEFFICIENTS 3. Results

3.2 Flow Coefficients

With a firm understanding of the initial conditions, I could then start inves-

tigating the flow coefficients vn, given by Equation 1.6.

Calculating vn for arbitrary n was easy, now that ROOT and C++ were

starting to become familiar. However, it was clear early on that some focus

was necessary, and under Wei Li’s advice, I started coding specifically for

second-order flow.

Thus, I began searching for an expected correlation between v2 and ε2. This

proved fruitful, but not completely clear. Wei further advised me to start

selecting which events I was analyzing as oppose to taking in all median bias

events. Additionally, once it became clear that v2 was behaving as expected

with respect to ε2, we moved past studing the initial particle state entirely,

since it’s not observable for actual data, anyway.

To segue into the next section, a v2 distribution for median bias, 8 ≤ b ≤ 10,

is shown in Figure 3.4

3.3 Impact Parameter

At this point, choices of impact parameter had to be made. I would like

to take a moment to discuss the implications of this. I’m starting to focus

on data that would show up in actual experimental data, not just simulated

data, and yet I’m going to be specially selecting impact parameter? Surely,

we cannot measure the separation distance between two relativistic heavy

ions on the order of a few fermi.

However, it is actually very reasonable to make this decision, as we have an

indirect method for measuring impact parameter. The related quantity is

15



3.3. IMPACT PARAMETER 3. Results

Figure 3.4: A histogram of v2 values for a relatively small number of
median bias events with impact parameter 8 ≤ b ≤ 10.

Figure 3.5: A scatterplot of the number of produced particles Nmult

versus the impact parameter b (in fermi).
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3.4. PSEUDORAPIDITY 3. Results

overall number of final particles measured, Nmult. It makes sense for Nmult

to be negatively correlated with b, since b = 0 means the ions are colliding

head-on, so this should be the case where the greatest number of particles

Nmult are produced. Interestingly, the correlation is not only consistent, but

very reliably so; this partly comes from the fact that the maximum Nmult

is very large, on the order of tens of thousands, as shown in Figure 3.5’s

scatterplot of Nmult versus b. In fact, Figure 3.5 makes it rather clear that

knowing Nmult means you can feel rather confident you know b to within ±1

fermi.

So, it is very reasonable to select a region of b-values that is 2 fm wide and

expect it to be experimentally determinable as well. In particular, we select

8 ≤ b ≤ 10 so that the intersection has a good chance of being elliptic and

Nmult ∼ 10000.

3.4 Pseudorapidity

Another way one can break up the data for interesting research is by the

pseudorapidity η. This is a spatial coordinate, not an event property, and it

represents the angle of a particle relative to the beam axis:

η = − ln tan
θ

2
=

1

2
ln

(
|p|+ pT
|p| − pT

)
(3.1)

where θ is the angle relative to beam and pT is the transverse momentum pz.

How this can be used in analysis is by studying the v2 and Ψ2 values when

you only take certain η-ranges into account. The simplest of these are the

ranges η > 0 ⇐⇒ pz > 0 and η < 0 ⇐⇒ pz < 0. These each take half

of the particles into account, and in general, should be symmetric. That is,

the same v2 coefficient should be obtained for both sets of particles, since v2

17



3.5. GAUSSIAN SMEARING 3. Results

is a measure of the azimuthal distribution in the xy-plane, and the division

η = 0 is the xy-plane. Thus, the ranges of positive η versus negative η are

symmetric about x and y, since it’s merely stating whether pz is positive or

negative.

Where this becomes really powerful is that if, in one event, you measure

v+
2 as the coefficient taking only positive η into account and v−2 as the co-

efficient taking only negative η into account, the absolute difference v2diff =
1√
2

∣∣v+
2 − v−2

∣∣ is a direct measure of the systemic error due to Nmult being

finite. In other words, The error due to finite particle production also causes

asymmetries with respect to η, and v2diff is a measure of that systemic error.

3.5 Gaussian Smearing

At this point, I wrote a script to compute v±2 and v2diff. The results from a

relatively small number of median bias events are shown in Figure 3.6 and

Figure 3.7. It is readily apparent that some sort of gaussian-like behavior is

occuring for v2diff. To confirm this, I took in all of the median bias data we

had collected thus far, still selecting 8 ≤ b ≤ 10, and fit the v2diff distribution

to a gaussian. The result of this is shown in Figure 3.8.

From here, I would like to take advantage of having found my systemic

smearing distribution. This process is called unfolding, and in particular, the

one I used is called Bayesian unfolding.

To apply Bayesian unfolding, I needed a smearing matrix of λji = P (Ej|Ci),
where the Ej are effect bins of possible values to measure for v2obs and Ci

are cause bins of the actual values for v2true. To build the matrix, I took

the histogram of Figure 3.8 and filled each column for a particular cause

P (Ej|C) with the bins from Figure 3.8, centered at the i = j bin. This has a

few technicalities. For small i, j, there is some confusion about running into

18



3.5. GAUSSIAN SMEARING 3. Results

Figure 3.6: A scatterplot of v−2 versus v+
2 , illustrating the positive

correlation about v+
2 = v−2 and the deviations from this norm.

Figure 3.7: A histogram of v2diff, illustrating the gaussian-like behavior
and the mean very close to 0.
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3.5. GAUSSIAN SMEARING 3. Results

Figure 3.8: A histogram of v2diff with many events fit with a gaussian.

Figure 3.9: A histogram of v2true with many events unfolded using v2diff.
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3.5. GAUSSIAN SMEARING 3. Results

the edge with the gaussian histogram. The solution I used was to reflect the

negative bins back into the matrix so that the Ci for small i still have full

efficiency (see Equation 1.7). For the other corner issue, when i, j are large,

I simply truncated the gaussian. The efficiency on that corner is irrelevant,

since my choice of binning for v2true and v2obs makes those Ci have a negligible

number of events.

With smearing matrix in hand, I proceeded to write a script to unfold the

the v2obs distribution I obtained from the same 63234 events I used to make

Figure 3.8. The resulting v2true distribution is shown in Figure 3.9.

The results were only mildly satisfying. The algorithm did not appear to want

to converge, possibly because of a messy Λ matrix. Further investigation

into how things change if I use the gaussian I fit to Figure 3.8 to build the

matrix, if I use one of the online packages for Bayesian unfolding, or if I build

my smearing matrix the same way as in the ATLAS[2] paper are all good

directions to continue my research.

Further, after my code runs properly on simulated data, it may be run on

experimental data from the LHC.
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